

Advanced Algebra Nomograph

ID: 8267

In this activity, you will explore:

- functions: notation, domain, and range
- composite functions

Listen as your teacher explains how the model of the nomograph works. Then open the file *Alg2Act1_AdvAlgNomograph_EN.tns* on your handheld and work with a partner to complete the activity.

Name _	
Class _	
1.1 1.2	2.1 3.1 RAD AUTO REAL
	ADVANCED ALGEBRA
	NOMOGRAPH
	Algebra 2
Fu	unctions: notation, domain,
	range, and composition

Name

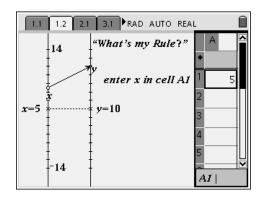
Introduction

A **nomograph** is similar to a function machine in that it relates a number in one set (the *domain*) to a number in a second set (the *range*). The nomograph takes the form of a pair of vertical number lines; the one on the left represents the domain; the one on the right represents the range. The function rule mapping an element in the domain to its corresponding element in the range is shown by an arrow.

Problem 1 – "What's my Rule?"

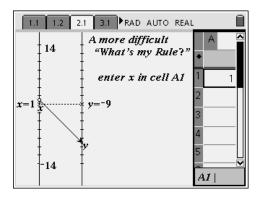
The first nomograph (representing an unknown function) is shown on page 1.2. Enter a value of *x* into cell A1 of the spreadsheet. (Press (tr) + (tab) to toggle between the applications as needed.) The nomograph relates it to a *y*-value by substituting the value *x* into the function's rule.

Your task is to find the "mystery rule" for **f1** that pairs each value for x with a value for y. Once you think you have found the rule, record it below. Then continue testing your prediction using the nomograph.



Problem 2 – A more difficult "What's my Rule?"

Unlike the nomograph in Problem 1, the nomograph on page 2.1 follows a non-linear function rule. As before, enter values for x in cell A1 and find the rule for this new function **f1**. Test your rule using the nomograph.



TI-*nspire*™

Problem 3 – The "What's my Rule?" Challenge

Page 3.2 shows a nomograph for the function f1(x) = x. The challenge is to make up a new rule (of the form ax + b or $ax^2 + b$) for f1(x), and have a partner guess your rule by using the nomograph.

On the *Calculator* application on page 3.1, select **MENU > Tools > Recall Function Definition** and press to choose **f1**. Use the **CLEAR** key to erase the current definition and enter your own. Then, exchange handhelds with your partner, who will use the nomograph to discover your rule. Then, repeat.

1.1 1.2 2.1 3.1 RAD AUTO REAL	
Change the definition of $f1(x)$ below.	
Define $fI(x) = x$	Done
[]	
	1/9

List at least four of the functions you and your partner explored with the nomograph.

 $f(x) = _$ $f(x) = _$ $f(x) = _$ $f(x) = _$

Problem 4 – The case of the disappearing arrow

Page 4.1 shows a nomograph for the function

f1(x) = $\sqrt{x^2 - 4}$. The input for this nomograph is changed

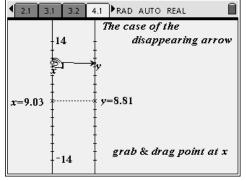
by grabbing and dragging the base of the arrow—the point that represents *x*. Observe what happens when you drag this point.

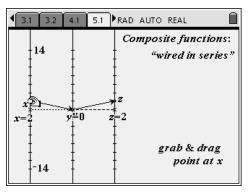
When does the arrow disappear?

Why does the arrow disappear?

Problem 5 – Composite functions: "wired in series"

The nomograph on page 5.1 consists of three vertical number lines and behaves like *two* function machines wired in series. The point at *x* identifies a domain value on the first number line and is dynamically linked by the function f1(x) = 3x - 6 to a range value *y* on the middle number line. That value is then linked by a second function f2(x) = -2x + 2 to a value *z* on the far right number line.





Either of the two notations f2(f1(x)) or $f2 \circ f1$ can be used to describe the *composite function* that gives the result of applying function f1 *first*, and then applying function f2 to that result.

For example, the number 4 is linked to 6 by **f1** (because **f1**(4) = 6), which in turn is linked to -10 by **f2** (because **f2**(6) = -10). Grab and drag the base of the arrow at point *x*—the point "jumps" in discrete steps of 2. Set *x* = 4 and confirm that *y* = 6 and *z* = -10.

Find a rule for the single function **f3** that gives the same result as f2(f1(x)) for all values of x. To test your answer, move to page 5.2 and define **f3** to be your function (as you did in Problem 3). Now compute several values, for each function, such as f2(f1(4)) and f3(4). Are they equal?

f3(*x*) = _____

Now use the Calculator application to compute and compare the following.

f2(f1(3)) = _____ f1(f2(3)) = _____

Try other values of *x*. Does the order in which you apply the functions matter?

Test your understanding by completing another example:

TI-*nspire*™

Again on page 5.2, redefine $\mathbf{f1}(x) = (x-1)^2$ and $\mathbf{f2}(x) = 2x + 3$. Find a rule for both $\mathbf{f2} \circ \mathbf{f1}$ and $\mathbf{f1} \circ \mathbf{f2}$, and test your answers by computing values as you did above. Test your answer by computing several values for each function, using the *Calculator* application.

f2(f1(*x*))=_____

f1(f2(*x*))=_____

Problem 6 – A well-behaved composite function

Some composite functions are more predictable than others. The nomograph on page 6.1 shows the function f1(x) = 3x + 3 composed with a mystery function f2. Grab and drag the base of the arrow at *x*.

What do you notice about the composite function $f2 \circ f1$?

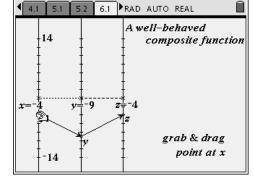
Play "What's my Rule?" to find the rule for **f2**.

f2(*x*) = _____

Now use the Calculator application on page 6.2 to compute and compare the following.

f2(f1(3)) = _____ f1(f2(3)) = _____

Try other values of x. Does the order in which you apply the functions matter?



Problem 7 – Inverse functions

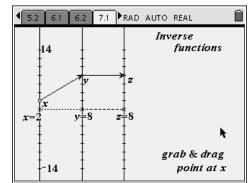
The "inverse" of a function f, denoted f^{-1} , "undoes" the function—it maps a point y from the range back to its original x from the domain. You can think of a function and its inverse as a special case of function composition. (This is what was shown in Problem 6.)

By definition, **f2** is the inverse of **f1**, if and only if:

- f2(f1(x)) = x for every x in the domain of f1, and
- f1(f2(x)) = x for every x in the domain of f2.

In the context of the nomograph, **f2** is the inverse of **f1** if f2(f1(x)) horizontally aligns with x for all values in the domain of **f1** (i.e. z = x), and vice versa.

The nomograph on page 7.1 shows the composite function $\mathbf{f2} \circ \mathbf{f1}$, where $\mathbf{f1}(x) = 2x + 4$ and $\mathbf{f2}(x) = x$. See if you can figure out what the rule for $\mathbf{f2}$ must be in order for $\mathbf{f1}$ and $\mathbf{f2}$ to be inverse functions. Use the *Calculator* application on page 7.2 to redefine $\mathbf{f2}$ to your rule, and return to the nomograph to test your answer.



Problem 8 – More disappearing arrows

The nomograph on page 8.1 shows the composite function $f2 \circ f1$ where f1(x) = 2x - 6and $f2(x) = \sqrt{x}$. Grab and drag the point at *x*. Watch as one of the arrows disappears.

Which arrow disappears? _____

When and why does it disappear?

Problem 9 – "Almost" inverses and more missing arrows

The nomograph on page 9.1 shows the composite function $f2 \circ f1$ where $f1(x) = \sqrt{x}$ and $f2(x) = x^2$. Grab and drag the point at *x*.

When does **f2** act like the inverse of **f1**?

When does **f2** *NOT* act like the inverse of **f1**?

When and which arrow(s) disappears?

Proceed to page 9.2 and reverse the definitions, that is, define $f1(x) = x^2$ and $f2(x) = \sqrt{x}$. Return to the nomograph.

When does **f2** act like the inverse of **f1**?

When does **f2** NOT act like the inverse of **f1**?

When and which arrow(s) disappears?